-2.3 -2 -3 -2_.3.T
[x_Nf_N, x-N+1f-N+1 seees Xy fN] .

where e denotes the vector
The solution of (3.3) involves the solution of a system of nonlinear
%
equations. By taking h -.5771 2N = 16 we get an approximate solutiod‘
16

£(x) 2 [ £,S(k,hod(x) (¢(x) = log x)
k=-16

which is accurate to 5 decimals on [0,=] .
Ex.3. Uk ™ Yp o 0<x<1, t>0

(3.4) {u(x,O) = gin mx, u(0,t) = u(l,t) =0 .

In order to get zero boundary conditions, we set

(3.5) R T T e

This yields the problem

2 =4t
Voo m w (n"-4)sin(mx)e , O<x<1l, t>0

(3.6)
v(x,0) = 0, v(O,t) = v(1,t) = O .

We solve this by taking our approximating basis functions to be

sk(x) = x(1-x)S(k,h)od(x), ¢(x) = log(x/(1-x)]

@.7)
Sp(t) = t S(L,0e4 (1),  ¢"(t) = log ¢ .

The problem (3.6) may now readily be reduced to a matrix problem, by

proceeding as for (3.2) above. Setting

*The solution f satisfies f£(x) ~ Ae * as x-?:: ,and consequently, it

may be necessary, on some computers, to replace %; by 2, where

¥ << N, in order to avoid underflow. N




-N,N VON,-N+1 e -NN
VeNel,-N Vonl,-NeL L Vol N
y

(3.8) V o=

VN, -N YN, -N+1 s

- (1) " 1 (2} oy o i kh g
(3.9) B=-2hA (x(1-x) ¢ LA (1=R0) + £ 17 (x = 5+ 5 tanh 57) )
|
\ (", —‘(" ks

(3.10) - 4*({'(5[”‘—‘,/.,_ } (}éo) = unit matrix, t =e ) )

$. s £ 1
Gan  p=m 6Pa-0% ,  (x =3+ tamh(n/2))

2 ks
a2 Eesaeh, (g )

- <

FF_N'_N F—N,-N+1 e F_N’N

Fvl,-8  Foyrr,ovn o Fopmn
(3.13) F = )

3 . .

F N,-N W e By ]

where
-4ty

2
Fkl - (7 -é)sin(ka)c 5
we arrive at the matrix system

(3.14) DBV + YCE" = F




ot
Eq. (3.14) may be solved by diagonalizing pjg and (& . If

-1
A_MI,....AN and MontMoNe1 et oMy denote the eigenvalues of D "B

X-N'
and C!~:-l respectively, obtained by taking E-ERJQX and ZGE .'Z" via

1 -1

e.g. the method of GoJub and Reinsch [3], and if G = lsk,t] =X 9

1 - [Yu] '3-115_1 then y, , = 3k£/“k + uz), and V = XY2Z .

By taking h-.75/Ny", q-.%w"‘ ,» N=16, we get an approximation

u(x,t) = e_“tsinnx + Z vle(k.h)oo(x)S(Z.h)o¢*(t)
k,L=-16

which is accurate to 4 dec. on (0,1] x [0,=] .

Ex.4

uxx + Uyy = '19 (x,}') & S = [001] x [0'1]

(3.15)

u=0 on 'as

Letting B and D be defined as in (3.9) and (3.11) we now get the

approximating matrix system
= Nt o
(3.16) rpu+ Y (7B H

where E.' [uu]. U (hkll’ hkl = 1 . This may now be readily solved
via the diagonalization of D"'Q . By taking N = 16, h = 75/N*% we get an
approximate solution
16
u(x,y) & ] u, pS (K, h)o $(x)S(£,h)ed(y)
kgl--16

which is accurate to 5 dec. on S .

A .ﬁ“‘

e
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4. Error Analysis

For sake of simplicity, we shall restrict ourselves to the simpler

case of the second order problem
(4.1) u" + f(x,u) = 0, u(0) = u(l) = 0

The analysis for the case of other ordinary or partial differential
equations is somewhat more complicated, but may be carried out similarly.
Throughout this section u,Cl.Cz....,C16 denote positive constants,
and h = [nd/(aN)¥] .
In the notation of the previous sections, we take ¢(z) = log(z/(1-2z)],
and we take tha domain of analyticity to be D = {z:|arg[e/i-z)]]| < d)} .
We shall assume that (4.1) has a.(locally) unique solution Yy which 1is

analytic and bounded in 0D and which satisfies the inequality

(4.2) lug)| < cx*-0%, o0gx <1,

Definition 4.1. Let M(d,a) denote the family of all functions v

that are analytic in 0, such that

v(0) = v(1) = 0
(4.3) gv"' € B(D), |g(x)v"(x)| _<_c2a°'1(1-x)°'1 on (0,1) ;

£V E BO), |gmeax,ve)| £ Cx* a0t on (0,1) ;

wvhere
(4.4) g(x) = x(1l-x) .

We shall also assume that the solution of the Frechet derivative

problem

SRR s




(4.5) 0" (x) + fu(x.u(x))O(x) = w(x), 06(0) =6(l) =0
satisfies
(4.6) lee] < ¢, 1o ]|

for all u € M(d,a) such that Hu—uo“ < ¢ where ||<|| 1s defined

by
4.7) [1€]] = sup  |£(0)],
xé(o ’ 1)
where
=1 1
(4.8) (A "f)(x) = -I CG(x,t)f(t)dt
0

and where for any x & (0,1},

(1-x)t 1if 0 <t < x

(4.9) G(x,t) =

x(1-t) 1f xgtgl.
Moreover, we shall assume that if ||u-ug|| <€, then
(4.10) A ™ e e uen ] < ¢

Let us assume that we have found an approximate solution
N

(4.11) u, ) = ]

v S(k,h)od(x) (m = 2N + 1)
k==N

by the method of the previous sections, and let us set

(4.12) _ o, = u, - g




T

TR,

oy

Then

(4.13) 0% (x) + fu(x.a(x))en(x) = u(x) + £(x,u_(x))

for some u between Y, and u and therefore, by (4.5) and (4.6),

(4.14) leg(x) | < ¢ llu + A-lf(°,um)|| ‘

Now by Theorem 2.1}, we find, by taking Sk(x) = g(x)S(k,h)od(x),

X " % + % tanh(kh/2), that

1 g(x. )
(4.15) I [v'(x) + f(x,v(x))lsk(x)dx & h ;T;E—)(v"(xk) + f(xk.v(xk))]
0 k
and
1
(4.16) I v"(x)sk(x)dx
0
8" (xy) (0 )
ah ,§ v(x )[-17;17 &gy * 2y’ (x,)48(x,)¢" (x,) /4" (x )}~
6@
+ux»<x>—LJ

3

in which the error of either term on the right-hand side of (4.15) is

¥, - (ndan)¥

bounded by c N and the error of the right-hand side of

-(wdan)* :

(4.16) is bounded by C7Nk¢ By our process of solution, the

numbers u, in (4.11) are determined such that
N i g1 62
(1] ]
h R ’[7}- &+ (23j + 8y 4 /0_1} -1—+ '_1‘3 —-Lh ]
(4.17)

+ h ':'E f(lk,uk) - 0, k - -N. -“"‘.....N .

|




{
k Theorem 4.2: Let the numbers u, (k= -N,-N+1,...,N) be determined

by (4.17), and let u-(x) be defined as in (4.11). Then

3/2e-(tan)*

(4.18) lu, (x) - uo(x)l < CyoN 0<xg<1l.

where Uy is the solution of (4.1).

Proof: In view of the errors in the approximations (4.15) and (4.16),

the solution of (4.17) is equivalent to finding a function v & M(d,a),

such that
g(x ) ck
(4.19) Y (x )[v"(xk) + f(xk,v(x )] = T k = -N,-N+1,...,N,
k where v(xk) .U and where
¥
(4.20) le | < cgvfe ™My oy w,LLL N

Since v € M(d,a), 1t follows, for any t €& (0,1), that

T $ Ex)
I-S-()-. oy [v"(®) + £(e,v(e))] -kz_. Tty 3700 [V () + £0x,v(x))1S(k, hod )
(4.21)
- sin[n¢(t) /h) z)[v"(2)+£(z,v(2))]dz
2ni ’ ¢(z)=-¢(t))sin[n¢(z)/h 3
9 ‘

|

By multiplying (4.21) by 0'(t)2. taking A of each side, and noting

that g(e)¢'(t) = 1, we get

Rt WA oL 179" b

: vix) + (e v(e))} ) - | -:-“r(v" + £0x v 1A X0 (0 sk, 0k (0) ()

ke=w

(4"2'2) - A-1 {!'m sin[®¢(t)/h) I f‘:)!v"ilgﬂszlv(q;’ }(x)
2ri 0 ¢(z)-¢(t) )sin[w¢(z)/h
9




Since ¢'(t) = 1/(t(1-t)], it follows, by taking

t = [1 + tanh(u/2))/2, x = [1 + tanh(w/2)]/2, and using (4.8) and

(4.9), that
1,(h0) = A0 (&) %stnc[{4(t)-kh}/h] } (x)
w
- - [ s e
(4.23) ~a
14 tanh(w/2) u-kh
g J 1 + tanh(u/2) sinc[ h Jdu
v

On the interval [-=,w], the function [l-tanh(w/2)]/[1-tanh(u/2)]
increases monotonically from ([1l-tanh(w/2)]/2 to 1 while on [w,»],
the function [l+tanh(w/2)]/[1+tanh(u/2)] decreases monotonically
from 1 to [l+tanh(w/2)]/2 . For this reason, it may be shown by

a somewhat lengthy, but simple argument, that
(4.24) |11(h.x)| < 4rmh .,
Similarly if x € [0,1]) and 2z € 3D, we can show that

2
-1(¢’ 2h
(4.25) [1,(h,x)| = |A 1{ 21'«;;0.13-25:;; * }(’)l =q

since Im ¢(z) = 2d .

By means of (4.19), (4.22) and (4.25), Eq. (4.21) now yields
lvexy + (A”2ece,v(e)) ) (0]

< |1, (h,x) | rZ‘ Lo + |1 (h,0)] "‘l[v" + f(x,,v,)]|
.x R el ’x ’
ol Tt ks-N D 1 |E|,,,'o'{ D b

(]
+ (10,2 Io l “%%ﬁf;{%%%%ﬁf*!‘illl dz|
9

e ot s, .
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Using the bounds given in (4.20) and (4.24), we bound the first sum

3/2.-(1.4«")"

on the right-hand side of (4.26) by 09N ; using (4.3) and

(4.24), and recalling that x, - % +4% tanh(kh/2), we bound the second
e ¥
sum on the right-hand side of (4.26) by Cloe (vdaN) ; and using

(4.25) and the fact that |sin[m¢(z)/h]| > sinh[nd/h] 1f z € 2D,

we bound the integral term on the right-hand side of (4.24) by

2h N(g[v" + £(°,v)])/[dsinh(nd/h)] = CIIN_*e-("dGN)* Hence for all
X é[ovllo

-1 3/2 -(ndaN)*
(4.27) |vix) + (A" £(e,v(t)) )} (x)] £ C N e :

Since v € M(d,a), it fcllows from the first and second of (4.3)

that

(4.28) lvea | £ € x*1-x%, 0<xscl.

Furthermore, since v &M(d,a), and since uy and v coincide at

LT SRPOTTRRT it follows that (13, Theorem 8.2] for all x & [0,1],

, ¥
(4.29) lu (x) - vix)| < clan"e'("‘"‘“’ ;
In view of (4.5), (4.6) and (4.10), it now follows that for all x €(0,1),
(4.30) lu (o) - (a7t £(e,u ()}

< v + 71 e, v} )| + Cglu (0 = vix)|

By (4.14), (4.27), (4.29) and (4.30), it thus follows that for all
x £ (0,1)

v ¥
(4.29) |..(g)| - |u.(:) - “o(*)l =.c15'3/2. (vdaN)™

St ERE PR SR




This completes the proof of Theorem 4.2.
Similarly, it may be shown that when using n = (2N+1)2 points
to obtain an approximate solution of a partial differential equation,

3/2 e-ﬂ{' <

such as (3.15), the error is bounded by C, N 5C

16

Indeed, for the case of (3.15), we may take C16 =1 and y = '2 -

%
n3/4‘-yn

s o L
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